hayat önümde pi sayısı kadar karışık duruyor, türev alıyorum, integral alıyorum nafile matematiğim yetmiyor.düşüncelerimi çarpanlara ayırmaya çalışıyorum x üzeri n oluyor, n sonsuza giderken kendimi bulamıyorum.herşeyi analiz ederken hayat sönüp gidiyor ve ben bunları yazarken [a,b] kapalı aralığında sıkışıp kalıyorum.Sonuç:Hayat önümde karmaşık bir sayı onu çözmeye ne benim gücüm yetiyor ne de matematiğim...
   
  MaTeMaTiK DeHaSı
  Matematiğin Temelindeki Kuramlar
 


MODEL KURAMI

Model teorisi, matematiksel konseptleri küme kuramı temelinde inceleyen ya da başka bir deyişle matematiksel sistemlerin dayandığı modelleri araştıran matematik dalıdır. Model teorisi, 'dış dünyada' matematiksel nesnelerin var olduğunu varsayar ve nesneler, nesneler arasında bazı işlemler ya da bağıntılar ve bir aksiyomlar kümesi verildiğinde, nelerin nasıl tanıtlanabileceğine ilişkin sorular sorar.

Seçim aksiyomu ve süreklilik hipotezinin küme kuramının diğer aksiyomlarından bağımsız olduğu tespiti model teorisinden doğan en ünlü sonuçlardır (Paul Cohen ve Kurt Gödel tarafından tanıtlanmıştır). Hem seçim aksiyomunun hem de seçim aksiyomu negasyonunun küme kuramının Zermelo-Fraenkel aksiyomlarıyla uyumlu olduğu tanıtlanmıştır. Bu sonuçlar model teorisinin özel bir uygulaması olan Aksiyomatik küme kuramı dalının bölümleridir.

Model teorisinin pratik bir uygulama örneği reel sayılar kuramıyla verilebilir. Her nesnenin bir reel sayı olduğu bir nesneler kümesi ve {×,+,-,.,0,1} gibi bir bağıntılar ve/ya da fonksiyonlar kümesini ele alalım. Bu dilde kuracağımız örneğin "
x (x × x = 1 + 1)" önermesinin reel sayılar için doğru olduğu yani belirtilen koşulu sağlan bir x olduğu bellidir; fakat aynı önerme rasyonel sayılar için yanlıştır. Buna karşın " x (x × x = 0 - 1)" önermesi reel sayılar için yanlıştır. Önermeyi doğru yapmak için sabit bir simge i ve yeni bir aksiyom "i × i = 0 - 1" ekleyerek kompleks sayıları tanımlayabiliriz.

Buna göre model teorisi matematiksel sistemler içinde nelerin tanıtlanabilir olduğu ve bu sistemlerin kendi aralarındaki ilişkilerle ilgilenir. Özel olarak model teorisi bir sisteme yeni aksiyomlar ya da yeni dil yapıları eklendiğinde ne gibi sonuçlar ortaya çıktığını araştırır.



İSPAT KURAMI

Matematiksel İspat Teknikleri



KÜME KURAMI
 
Basit kümeler kuramı matematikçiler tarafından 19 yüzyıl sonunda geliştirilen özgün küme kuramıdır
Zermelo-Freankel küme kuramı (ZFC), basit kümeler kuramındaki Russel paradoksu gibi zafiyetlere yanıt olarak geliştirilen belitsel bir kuramdır.
Mantığın çeşitli türlerinde farklı küme türleri kullanılabilmektedir (örneğin Bulanık mantıkta Bulanık kümeler).
Müziksel kümeler kuramı matematiksel kümeler kuramının müziğe uygulaması olarak tarif edilebilir.



Özellikle öğrencilerin, gereksiz gördüğü ya da zor bulduğu için es geçtiği ispatlar aslında matematiğin en gerekli, çoğu zaman zevkli ve matematikçileri en çok uğraştıran kısmıdır. Ne de olsa ispatlar, matematiksel ifadelerin geçerliliğinin teminatıdır. Bugün cevabı bulunmamış pek çok matematik sorusu ispatlanması istenen ifadelerden ibarettir. İspat yapmanın çok çeşitli yolları vardır. Bu nedenle sık sorulan bir soru, bir teoremi ispatlamak için hangi tekniği seçmek gerektiğini nasıl bileceğimizdir? İşte bu, ancak pek çok ispatı incelemek ve çalışmakla kendinden gelişecek bir özelliktir. Kimi zamansa şanstır. Ama unutmayın şans ancak hazırlıklı kafalara güler! Hazırlıklı olmak için de, tekniklerden haberdar olmak gereklidir.

1) Doğrudan İspat Yöntemi

En temel ve basit ispat şeklidir. Doğru olduğu gösterilmek istenen ifade, direk olarak, doğruluğu kanıtlanmış başka ifadelerle veya aksiyomlarla türetilir. Türetmek için, bu ifadeleri mantık kuralları çerçevesinde doğrudan birleştirme yapabilirsiniz. Bu birleştirmeyi örneklendirmek için felsefede oldukça sık kullanılan bir örneği verebiliriz:

Tüm insanlar ölümlüdür.
Sokrat bir insandır.

Verilen bu iki ifadeyi birleştirerek şu çıkarımı elde ederiz:

Sokrat bir ölümlüdür.

Matematikte "iki çift sayının toplamı çifttir"; "iki rasyonel sayının çarpımı da bir rasyonel sayıdır."şeklindeki ifadeleri doğrudan tanım kullanarak ispatlayabilirsiniz. Sadece tanımlar değil önceden ispatladığınız teoremler de ispat basamaklarında yer alabilir.

2) Olmayana Ergi Yöntemi

Bu yöntemde doğruluğunu göstermeyi planladığınız ifadenin yanlış olduğunu kabul ederek işe başlıyorsunuz. Yanlışlığı ispatlama yolunda bir çelişkiye varıyorsunuz. Sonuç olarak başta yanlış olduğunu kabul ettiğiniz ifadenin aslında doğru bir ifade olduğunu ispatlamış oluyorsunuz. Bu yöntemle ispatlanan çok ünlü teoremler var.

Teorem: Sonsuz tane asal sayı vardır.

İspat (Öklid): Varsayalım ki sonlu tane asal sayı olsun:

2,3,5,7,11,.,P

Şimdi bu asal sayıların hepsini çarpıp 1 ekleyelim ve yeni bir sayı tanımlayalım:

K = 2.3.5.7.11.P + 1

Bu sayı tüm asal sayılardan büyüktür, çünkü hepsini birbiriyle çarptık ve bu da yetmezmiş gibi bir de ekleme yaptık. Öyleyse K bir asal sayı değildir. Bu durumda K nın kendinden ve 1'den farklı bir asal çarpanı vardır çünkü bileşik (asal olmayan) sayılar asal çarpanlarına ayrılır. Ama K sayısını, hangi asal sayıya bölersek bölelim 1 kalanını elde ederiz ki bu da tam bölünmediğinin yani asal bir çarpanının olmadığının bir göstergesidir. Öyleyse K asal bir sayıdır . Daha önce bunun tam tersi olduğunu göstermiştik. Sonuç olarak bir çelişkiye vardık. Yani sonlu tane asal sayı vardır ifadesi yanlıştır. Sonsuz tane asal sayı vardır.

3) Tümevarım Yöntemi

Verilen bir ifadenin tüm doğal sayılar için doğru olduğunu ispatlamakta kullanılan oldukça pratik bir yöntemdir. Bu yönteme ifadenin önce 1 için (daha doğrusu, ifadenin doğruluğunun başladığı doğal sayı için) doğru olduğu gösterilir. Daha sonra n doğal sayısı için doğru olduğu farz edilir ve n+1 doğal sayısı için doğru olduğu gösterilir. Bu da herhangi bir doğal sayı için doğruysa sonraki için de doğru olacağını ispatladığından bütün doğal sayılar için geçerli bir ifade olduğu anlamına gelecektir. Bu yöntem genelde sonsuz sayıda domino taşlarının dizilmesine benzetilir. n. taşın devrilmesi bir sonraki yani n+1. taşın da devrilmesi anlamına geleceğinden taşların tamamı devrilecektir. Tabi ki yine n=1 için doğruluğunu söylemek lazım. Bunun için de ilk taşı devirmeniz yeterli olacaktır.

4) Konstrüktif İspat Yöntemi

Bu teknik, özellikle varoluş teoremlerinin ispatlanmasında kullanılır. Örneğin "her rasyonel sayı çiftinin arasında bir rasyonel sayı vardır" ifadesini ispatlarken iki rasyonel sayı alınır ve aralarında bulunduğu bahsedilen sayı, bu sayılar üzerinden inşaa edilir. Böylelikle gerçekten bir rasyonel sayının varolduğu ispatlanır.

5) Kontrapozitif Teknik

''P ise Q ifadesi, değil Q ise değil P ifadesine denktir.''
Bu ispat tekniğine teoremin bildirdiği sonucun, tersini doğru kabul ederek başlıyoruz. Sonuda ise hipotezin yanlış olduğu ifadesine ulaşıyoruz.

 
  Bugün 7 ziyaretçikişi burdaydı! ÖMER İLÇİN

oyun skor

 
 
ÖMER İLÇİN
Bu web sitesi ücretsiz olarak Bedava-Sitem.com ile oluşturulmuştur. Siz de kendi web sitenizi kurmak ister misiniz?
Ücretsiz kaydol